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Executive Summary

This memo contains my contributions to the Code Strategy Implementation Plan, which was
begun in summer 2002 by the Code Strategy Implementation Team (CSIT), of which I was a
member. These contributions are in the form of three sections, each with an executive summary:

• Numerical Methods, Algorithms, and Component Delivery

• Components for the ASC Program

• Development Environments (DE) for the ASC Program

The first two sections were completed in October, 2002, and the third section was completed
in December, 2002. These contributions are being published 6–8 months after the fact because
the Code Strategy Implementation Plan has not been disseminated widely, and I need to inform
my group and my management what I contributed. Time has rendered some of the specifics of
this writeup outdated, but the ideas and proposed strategy remain relevant.

The viewpoints expressed here are mainly due to my experience with the Jayenne IMC
Project in CCS-4 (Transport Methods), but are meant to represent the view of methods and
ASC software developers in CCS Division. The CCS-4 group members, the Components Project
Leaders, and other members of the CSIT commented on these writeups before they were sub-
mitted; all comments were incorporated into the writeup.

The main implementation details to be taken from these writeups are that all new code
development–even on legacy codes–be done as components and that the program to move to a
component-based development environment.

1. Numerical Methods, Algorithms, and Component Delivery

1.1. Executive Summary

The validated software used for LANL’s mission must be comprised of verified physics components
that contain the best numerical methods and algorithms. Using components to build software is a
foundational development practice that makes verification tractable. Verification is the assurance
that equations are solved correctly and the assurance that software behaves as expected. Unless
software behaves as expected, validation of the software is pointless, and predictive capability is
impossible. Components, whether developed by component teams or ASC application code teams,
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will be contributed to the ASC application codes via industry-standard processes for staged delivery
of high-quality software. The metrics for judging the quality of a component are classed into physics,
numerics, and software categories. In general, the component must behave as expected. The most
important metric for a component is its testability. Other metrics are interoperability and degree of
efficiency at which LANL’s resources are utilized. Information for metric assessment and decision
points will be procured through various levels of peer review, up to ASC-wide. ASC management
will make or approve the final assessment and decisions.

1.2. Introduction

The validated software used for LANL’s mission must be comprised of verified physics components
that contain the best numerical methods and algorithms. Using components to build software is a
foundational development practice that makes verification tractable. Verification is the assurance
that equations are solved correctly and the assurance that software behaves as expected. Unless
software behaves as expected, validation of the software is pointless, and predictive capability is
impossible.

Staged delivery of high-quality components to the ASC application codes will occur via mature,
documented, industry-standard processes. One example is the “unified process” [1]. These ex-
pectations apply to whomever develops components, whether it is a component team or an ASC
application code team.

Briefly, a software component has a well-defined interface (input and output), with well-documented,
repeatable functionality. Moreover, aside from interface code (also known as “glue” or “middleware”
code), a component does not change when deployed to different application codes. Components are
necessary for other SQE practices, such as unit testing and levelized design. Components and unit
testing make debugging and verification tractable because the work associated with unit testing
scales algorithmically, not geometrically as it does with integral testing alone. Component-based
software development helps locate bugs quickly and assign proper responsibility. Component-based
software development makes it easier to test new methods and may help bridge the gap between
research and code development.

Therefore, the objective of methods research and component development is to deliver these high-
quality components for use in the ASC validation efforts. We outline the metrics of a successful
component and describe the peer-review for obtaining information for ASC management to assess
how well a component meets these metrics.

1.3. Iterative Steps in Component Development

The iterative steps in developing a component are inception, design, construction, transition.

1.3.1. Inception. Specified requirements are a component’s seed of inception. For a high-level
physics component, the requirements are identified and prioritized by ASC management via user
requests and negotiations between pertinent stakeholders. Pertinent stakeholders include compo-
nent developers, application code developers, users, designers, program managers, group managers,
and division managers. Component requirements must balance physics, methods, algorithms, com-
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puter hardware, environments, experimental requirements and data, etc. Sub-components should
be shared between high-level physics components when appropriate. When negotiations fail and
ASC management needs additional input, it may be necessary to convene the Code Strategy Im-
plementation Team or a panel of Science Advisors from the directorate.

1.3.2. Design. Component developers are responsible for writing up the specifications of the com-
ponent. The document should detail what they will deliver and the behavior of the software, given
their understanding of the requirements. This document should also provide a schedule so that
progress can be tracked by developers, customers, and management. The input, output, and behav-
ior of a component is driven by contractual requirements. Interfaces are negotiated, agreed upon,
and documented. The component developer must document the assumptions and reasons behind
the choice of methods, algorithms, and design.

Component developers are also responsible for documenting the component’s numerical equations,
the continuum equations, and quantification of numerical errors. Merely referencing journal articles
is not enough. These documents are to be living documents, ideally stored with the source code,
that represent ongoing changes in the physics, numerics, and code.

The design documentation will also serve as material for peer review of the design.

1.3.3. Construction. Components must be constructed using standard languages, without push-
ing the language envelope or over-stressing compilers. Component developers are responsible for
documenting the methods used by the component, commenting the component, testing the com-
ponent, getting the component peer-reviewed (e.g., code reviews, code walk-throughs, and pair
programming), and documenting the component and its interface. By the same token, component
developers are responsible for peer-reviewing other components. The component must be verified to
behave as expected (e.g., Design-by-Contract(tm), error analysis, accuracy, convergence, stability,
etc.).

1.3.4. Transition. The transition of a component is the redesign, rewriting, or refactoring of the
component necessary to improve the component or to address the inevitable changes in systems,
hardware, related software, interfaces, and requirements. Interfaces are designed to be static, but
will necessarily change, and therefore should be managed to change in a controlled fashion.

1.4. Delivering a Component to an ASC Application

When the first staged-delivery of component is released and ready for integration, both the compo-
nent team and ASC application code team share the responsibility for integration. Both teams are
responsible for the multi-component issues that will arise. Thus, component teams share responsi-
bility for how their component interacts with other components, how their components are used,
and user support. Component developers may assist users or take part in validation efforts. Re-
sponsibility for component maintenance should motivate use of the best SQE practices to develop
high-quality software.

Responsibility for a component beyond its development must be enforced. This extended and
overlapping responsibility is necessary because of LANL’s limited-scope, focused mission, and it is
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expected because of the corresponding funding levels and the limited staffing levels.

1.5. Resource Allocation

To balance independent research, directed research, and programmatic delivery, activities that de-
liver capability to the ASC application codes by 2005 or before must have higher priority. Therefore,
independent research that has little or no bearing on programmatic activities must have the lowest
priority. It is understood that verification and undergoing and performing peer reviews are inherent
costs of software development.

1.6. Metrics for Components

The metrics for judging the quality of a component are classed into physics, numerics, and software
categories. If a given release, or delivery, of a component does not meet the specified requirements,
the probability that future deliveries will meet the requirements must be ascertained. For each
category, we list pertinent questions.

1.6.1. Physics. The physics requirements are stipulated and documented. Does the component
meet the stipulated and documented physics requirements? Have the physics requirements changed?
Does the documentation reflect these changes?

1.6.2. Numerics. Do results from the component match analytic results? How well, quantitatively?
Does error analysis of the component match the expected analytic analysis? If not, why not?

1.6.3. Software Engineering. Is the software readable? Is the style consistent? Is the design
understandable? Is there a sufficient amount of comments?

How easy is it to verify the component? Is a component broken into smaller, easily testable, sub-
components? If not, why not? Does each sub-component have a unit test? To what degree is the
component verified in the way of unit tests? Are the unit tests used for regression testing?

What is the bug history? How long did it take to make the first delivery? How long has or will it
take to make the next delivery?

How many application codes are using the component? Does the component have a peer with
which it is interchanged? Compare and contrast the peers. For a potentially reuseable component,
does its generality come at the cost of reliability, maintainablility, and development time?

What are the building, compiling, and runtime qualities of the component? Is the time to build and
compile tolerable? Is the component’s efficiency sufficient? Has it been checked for memory leaks?
How seamless is the component integration? What are the costs and benefits of the component?

1.7. Methods for Assessment of Metrics Satisfaction

Peer-reviews and customer satisfaction will be used to assess whether a component has met its
stipulated metrics.
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Those who specified the physics requirements must agree that the requirements were met, or they
must agree to modifications of the requirements. The agreements must be documented for every-
one’s benefit.

Peer-review will be used to critique the numerics associated with the component. Personnel from
within the component developers’ group or specialty, from other component teams, and customers
will assess the choice of numerical methods and algorithms, the assumptions behind those choices,
the computational efficiency of the methods and algorithms chosen, and the errors and quantifica-
tion of errors in the numerical methods as coded.

Peer-review will be used also to critique the software engineering aspects of the component. Person-
nel from within the component developers’ group, from other component teams, and from software
engineering groups will be tasked to assess the readability, testability, maintainability, ability to
handle expected requirements, efficiency, and overall usefulness (amount of testing, sharing, and
interchanging) as a component. Once a component has been delivered to the end user, testing
should have eliminated most of the software bugs. After delivery, the quality of the component
will be questioned insofar as the number and frequency of bugs, and who found the bugs. Part of
this peer-review will be live demonstrations of the version control, building, and verification of the
software.

Both undergoing and performing peer-review must be an inherent part of component developers’
business. They must funded as such.

1.8. Component Decision Points

Information from peer-reviews will be used for making technical decisions regarding the component.
When a component meets the testability criteria, it contributes directly to an improved predictive
capability and should continue its existence. When a component is being used in an ASC ap-
plications code and its testability and quality outweigh any of its performance inefficiencies, the
component is a success. Sharing a high-quality, well-tested component simply increases its impor-
tance. The ability to interchange a high-quality, well-tested component with another component
indicates an effective use of components. On the other hand, although the reusability of a specific
component across many applications is desired, resuability should not dictate the software design
to the serious detriment of reliability, maintainability, and development time. If component-based
software development gets more ASC-funded personnel involved in LANL’s mission, it is an even
greater success.

2. Components for the ASC Program

2.1. Executive Summary

One of the goals of the Code Strategy is to increase the level of component-based software devel-
opment in the ASC code effort. The effect of component-based software development is improved
verification and better utilization of LANL’s resources. The goal of the Code Strategy Implemen-
tation Plan is to change the atmosphere of unnecessary competition and poor verification to an
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atmosphere of collaboration in developing well-verified software. Thus, LANL code developers must
now consider whether the capability they are developing or planning to develop is suitable to be
developed as a component and whether or not multiple application codes can use the component.
The ASC sub-project 1.1.2.3.4: Component Definition and Architecture R&D is intended to be a
seed and catalyst for implementing this change in software development practice. Its plan is to
construct, help construct, or facilitate the construction of new or converted components and to in-
tegrate, help integrate, or facilitate the integration of both new, ongoing, and existing components.
Quarterly ASC-wide gatherings and peer review will be the forum for requesting and prioritizing
components. ASC-level management, with involved division and group management, must decide
upon and approve the recommended or suggested prioritizations. Recommendations and decision
must be documented.

2.2. Introduction

One of the goals of the Code Strategy is to increase the level of component-based software de-
velopment in the ASC code effort. Using components to develop software is one of many useful
SQE practices [2]. Components can be individually tested; these unit tests aid in the development,
maintenance, and extension of the software. Moreover, components can be arranged in a hierarchi-
cal, levelized design to build up higher-level components. Unit testing makes predictive capability
approachable, because errors can be nearly impossible to detect from the highest, executable level
alone. Well-tested, verified code frees up the users to concentrate on the validation of the physical
models in the software.

Beyond testing, components can be shared and interchanged. This interoperability allows code
re-use, increases capability, and reduces duplicated work, all of which will tend to further improve
the overall quality of ASC software and increase the efficiency of ASC software development. Com-
ponents allow true method-to-method comparisons when those methods reside in different codes.
Component histories, both successes and failures, will be kept in a source code repository for future
reference.

Although this Code Strategy Implementation Plan specifies that all codes–both legacy and ASC–
continue to live, components will help manage the number of codes over time. The transfer of
technology from a legacy code to an ASC code can occur by converting the legacy capability to
a component, using that component in the legacy code, and using that component in ASC codes.
Legacy codes can be retired legitimately when ASC codes contain a sufficient amount of their
capability.

2.3. Plan

The general plan is to construct, help construct, or facilitate the construction of new or converted
components and to integrate, help integrate, or facilitate the integration of both new, ongoing, and
existing components.

2.3.1. Physics. Identify, or locate and collate, the continuum and discrete equations used in the
ASC application codes.
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2.3.2. Design. Construct conceptual and actual levelized design diagrams of the components in
the ASC software program. This tool will help locate places where components make sense.

2.3.3. Requests and Prioritization of Components. ASC-wide peer review will be the forum for
requesting and prioritizing components. ASC-level management, with input from involved division
and group management, must decide upon and approve the recommended or suggested prioritiza-
tions.

When an ASC application code team plans a new capability, they must now consider developing this
capability as a component. They must query the other code teams about sharing the component
and design the component interface accordingly. Peer reviews of different levels will focus on code
design, verification, and validation.

2.3.4. Interlanguage Issues. The standard languages F90 and C++ communicate effectively now
through flat interfaces. How can we make these interfaces more robust and efficient? Will we be
able to migrate our components to more ambitious, language-independent component models, such
as the Common Component Architecture (CCA)? We will demonstrate the effectiveness of coupling
with other languages, such as Java—in which the CarteBlanca code is written, with F90 and C++.

2.3.5. Proposed Component and Component Integration Efforts. Below are several suggested com-
ponent efforts that are ripe for investigation, development, and/or utilization.

-materials package

X-7 has a materials package for Lagrangian hydrodynamics. T-14 has a materials package for
analytic models and a design more appropriate for ALE/Eulerian hydrodynamics. Help X-7 design
for ALE, and facilitate the introduction of EOSPAC into T-14’s package. Identify and extract
components common in the two packages. Seek involvement of others.

-EOSPAC, NDI, Gandolf, CDI, etc.

Encourage and assist all codes to use these existing component. Is there a legitimate reason for
codes not to use these components? If so, how can that be remedied? Can users of these components
contribute to the development, testing, and extension of them?

-production/depletion

Many code-pirated (code that is copied and tweaked “slightly”) versions exist. Can the leading,
most modern effort be componentized and shared?

-tracers

Componentize existing capabilities so they can be tested and verified, then validated by the users,
who may wish to extend the physics capability.

-hydro

Some efforts have already shown success with componentized hydro. Research and construct di-
mensionally unsplit, multi-material, Cartesian AMR Godunov hydrodynamics package, which will
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fill in a small gap and which will serve as a testbed for unsplit radiation-hydrodynamics. This
hydro component will target PSP with a goal of sharing components with the AMR hydro used in
the Blanca Project. Consider also a tetrahedral-based hydrodynamics component.

-sub-zonal physics

The potential for componentizing sub-zonal physics and numerics should be investigated. E.g.,
interface tracking.

-transport

Transport packages already exist. Continue their development and integration as necessary. CCS-4
is beginning a deterministic thermal radiative transfer project that will produce diffusion and first-
order discrete ordinates transport packages on unstructured meshes and that initially will target
PSP.

-linear/nonlinear solvers

In-house and vendor libraries exist. Much of the solvers technology is inseparable from the numerical
physics. Where should the line be drawn? A general nonlinear solver package should also be
developed.

-mesh

Identify existing meshes and share. Construct a Cartesian AMR mesh type for PSP that can be
used by the Blanca project’s AMR efforts.

-setup

Componentize some of the X-8 efforts so other unstructured mesh-based codes can use their tech-
nology. Can tools such as ICEM be used in ASC codes other than PSP?

-remapping

Componentizing new and ongoing remapping efforts in X-8 and T-7 will allow physics components
on different mesh types and variable locations to interact. Thus, it will be possible to take first
looks at new methods without converting them to specific mesh types or discretizations. Implicit
remapping that is tightly coupled to the physics may not be as independent as explicit remapping,
but implicit and explicit remapping components should still be able to share sub-components.

3. Development Environments (DE) for the ASC Program

3.1. Executive Summary

A development environment (DE) is the policy and set of tools and components that allow software
developers to write, compile, debug, document, and test software. The span of a DE varies. Some
DEs are appropriately used across the freeware world, an entire institution, or a code team. At the
broadest level, a DE is an environment where people can develop and share components.

What we really want to push is the DE that is an environment where people can develop and
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share components. This collaborative, synergistic environment will be facilitated through regular
ASC-wide gatherings, web postings, a common repository, and multiple levels of peer-review, the
recommendations from which will be affirmed by ASC management. Whether component-based or
not, we initially consider each ASC and legacy code as its own DE that continues to live. As the
ASC software effort utilizes an increasing number of components—whether new, or harvested and
converted—codes can share these components, and redundant codes can be retired legitimately.

3.2. Definition of Development Environment

A development environment (DE) is the policy and set of tools and components that allow software
developers to write, compile, debug, document, and test software.

The span of a DE varies. Some DEs are appropriately used across the freeware world, an entire
institution, or a code team. It follows that there exists a hierarchy of DEs. Thus, a code team
would most likely interact with DEs at levels both above and below their own DE. The purpose of
some DEs may be to provide components to a higher level DE; for others it may be to dictate how
lower level components are to interact.

At the broadest level, a DE is an environment where people can develop and share components.

3.3. Examples of Development Environments

The current ASC Problem Solving Environment (PSE) already has or sponsors official tools, for
example, tools for debugging (Totalview) and visualization (Ensight). The ASC PSE also con-
cerns itself with platform dependent issues regarding, for example, standard libraries, vendors, and
compilers.

An example of a DE is one that dictates how developers can write code or link components to
produce an executable of a design code. Most of LANL’s ASC and legacy codes fall into this
catagory. The CartaBlanca code is a LANL example, written in Java, for methods research and
delivery to outside customers.

At another level, Development Environments are a set of available components that can be used (and
re-used) by higher level components and application codes. At LANL, for example, the Transport
Methods Group has Draco, a library of unit-tested, re-usable radiation transport components.

Two efforts at Sandia National Laboratory, Sierra and Nevada, facilitate the development of com-
ponents and dictates how they interact.

3.4. Implementation Plan for Investigating Development Environments

We will compare, contrast, and utilize LANL and non-LANL DEs as necessary.

There exists a language-independent component model called the Common Component Architec-
ture (CCA). CCA has standards for component interfaces and other component service that may or
may not be suitable to LANL’s ASC effort. We will investigate how much, if any, of CCA standards
and capability we should employ.
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FIG. 1: Diagram of layered, general components that share centralized sub-components.

3.5. Implementation Plan for a LANL ASC-wide Development Environment

At the broadest level, a Development Environment is an environment where people can develop
and share components. This sense of the DE is missing at LANL. We desire that the LANL
ASC effort look and operate like a project with one mission. Such a collaborative, synergistic
environment will be facilitated through regular ASC-wide gatherings, web postings, a common
repository, and multiple levels of peer-review, the recommendations from which will be affirmed by
ASC management.

Whether component-based or not, we initially consider each ASC and legacy code as its own
DE that continues to live. However, it is understood that the Code Strategy specifies that any
planned new capability, whether in an ASC or legacy code, or whether new or retrofitted, must be
considered for development as a component, potentially sharable. If a legacy code has a capability
that is required in an ASC code, that capability can be rewritten as a component, used and tested
as a component in the legacy code, and then used in the ASC code(s).

As the ASC software effort utilizes an increasing number of components—whether new, or harvested
and converted—codes can share these components, as shown in Figure 1, and redundant codes can
be retired legitimately. A common repository, such as the new ASC implementation of sourceforge,
will assist the collaborations within the LANL ASC-wide DE.

The prioritization, targets, and decisions for creating or harvesting and converting components will
be recommended by peer-review and affirmed by ASC management.
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